Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Plant Physiol Biochem ; 207: 108383, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286092

RESUMO

Underground vegetables are sensitive and vulnerable to salt stress. The vegetables are the main source of vitamins, nutrients and minerals in human diet. Also contain healthy carbohydrates, antioxidant and resistant starch which are beneficial for human health. Salinity influences water balance, morphological appearance and cellular interference of crop plants. It also caused disproportion of nutrients which usually affects the physiochemical processes in plant. Salt stress also affect biochemical attributes and hampers the growth of underground organs, due to which yield of crop decreased. The nanoparticles had been potentially used for better crop yield, in the recent. In our research study, we elaborate the positive response of magnesium oxide nanoparticles (MgO-NPs) on the morphological and biochemical parameters as well as anti-oxidant enzymes action on two accessions of carrot (Daucus carota L.) under salt stress of 40 mM and 80 mM. In a pilot experiment, various levels (0, 50, 100, 150, 200 and 250 mg/L) of MgO-NPs were tested through foliar application on carrot plants. Foliar application of MgO-NPs at concentration of 150 mg/L was most effective treatment and ameliorate the salt stress in both carrot accessions (DC-03 and DC-90). The MgO-NPs significantly enhanced the morphological and biochemical parameters. The yield was significantly increased with the exposure of MgO-NPs. Our results thus confirmed the potential of MgO-NPs to endorse the plant development and growth under salinity. However, further research study is needed to explore effectiveness of MgO-NPs in various other plants for the ameliorant of salinity.


Assuntos
Daucus carota , Nanopartículas , Humanos , Magnésio/farmacologia , Óxido de Magnésio/farmacologia , Antioxidantes/farmacologia , Estresse Salino
2.
Molecules ; 28(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37894640

RESUMO

Plants are a valuable source of drugs for cancer treatment. Daucus carota has been investigated for its health properties. In particular, Daucus carota L. subsp. Sativus, the common edible carrot root, has been found to be rich in bioactive compounds such as carotenoids and dietary fiber and contains many other functional components with significant health-promoting features, while Daucus carota L. subsp. Carrot (Apiacae), also known as wild carrot, has been usually used for gastric ulcer therapy, diabetes, and muscle pain in Lebanon. Here, we review the chemical composition of Daucus carota L. and the functional properties of both edible and wild carrot subspecies. Then, we focus on compounds with anticancer characteristics identified in both Daucus carota subspecies, and we discuss their potential use in the development of novel anticancer therapeutic strategies.


Assuntos
Daucus carota , Daucus carota/química , Líbano
3.
Plant Methods ; 19(1): 104, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805561

RESUMO

BACKGROUND: Since its discovery, somatic hybridization has been used to overcome the sexual barriers between cultivated and wild species. A combination of two somatic cells might provide a novel set of features, often of agronomical importance. Here, we report a successful approach for production and selection of interspecific somatic hybrid plants between cultivated and wild carrot using dual-labelling of protoplasts and an early selection of fused cells via micromanipulator. Both subspecies used in this study are characterised by a very high regenerative ability in protoplast cultures. Thus, a precise and effective method of hybrid selection is essential to assure the development and regeneration of much less numerous heterokaryons in the post-fusion cell mixture. RESULTS: Electrofusion parameters, such as alternating current and direct current, were optimised for an efficient alignment of protoplasts and reversible membrane breakdown followed by a cell fusion. Four hundred twenty-nine cells emitting green-red fluorescence, identified as hybrids, were obtained. Co-culture with donor-derived protoplasts in the alginate feeder layer system stimulated re-synthesis of the cell wall and promoted cell divisions of fusants. Somatic embryogenesis occurred in hybrid-derived microcalli cultures, followed by plant regeneration. Regenerated hybrids produced yellowish storage roots and leaves of an intermediate shape between cultivated and wild subspecies. The intron length polymorphism analysis revealed that 123 of 124 regenerated plants were hybrids. CONCLUSIONS: The developed protocol for protoplast fusion and an early selection of hybrids may serve as an alternative to combining genomes and transferring nuclear or cytoplasmatic traits from wild Daucus species to cultivated carrot.

4.
Mol Biol Rep ; 50(1): 349-359, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36331749

RESUMO

BACKGROUND: Carrot is the most important vegetable in Apiaceae family, and it is consumed globally due to its high nutritional quality. Drought stress is major environmental constraint for vegetables especially carrot. Limited data is available regarding the mechanisms conferring drought tolerance in carrot. Methods and Results Eight commercial carrot cultivars were used in this study and subjected to drought stress under semi-controlled greenhouse conditions. Biochemical, antioxidant enzymatic activity and changes in transcript level of drought related genes was estimated, the gene expression analysis was done by using qRT-PCR in comparison with reference gene expression Actin (Act1). Results revealed that cultivars Coral Orange, Tendersweet and Solar Yellow were tolerant to drought stress, which was supported by their higher transcript levels of catalase gene (CAT), superoxide dismutase genes (Cu/ZN-SOD, Cu/Zn-SDC) in these cultivars. The downregulation of PDH1 gene (Proline dehydrogenase 1) was also observed that was associated with upregulation of proline accumulation in carrot plants. Moreover, results also suggested that PRT genes (Proline transporter genes) played a key role in drought tolerance in carrot cultivars. Conclusion Among the cultivars studied, Coral Orange showed overall tolerance to drought stress conditions, whereas cultivars Cosmic Purple and Eregli Black were sensitive based on their biochemical and gene expression levels. According to our knowledge, this is the first comparative study on drought tolerance in several carrot cultivars. It will provide a background for carrot breeding to understand biochemical and molecular responses of carrot plant to drought stress and mechanisms behind it.


Assuntos
Daucus carota , Daucus carota/genética , Daucus carota/metabolismo , Secas , Melhoramento Vegetal , Perfilação da Expressão Gênica , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética
5.
Appl Radiat Isot ; 190: 110523, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308977

RESUMO

The main objective was to select salt tolerant lines at the cell level of Hatay region's black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) using callus and suspension culture techniques combined with gamma rays. Hypocotyl explants of http://www.scialert.net/asci/result.php?searchin = Keywords&cat = &ascicat = ALL&Submit = Search&keyword = in+vitro (in vitro)">in vitro grown plantlets was used for callus induction. Effective mutation dose was determined by gamma radiation treatment at various doses (0, 5, 10, 20, 30, 40, 50, 60 Gy) to black carrot calli after in vitro optimization steps. According to regression analysis, the number of plants regenerated from calli was found 8.36 Gy as effective dose. In the ongoing study, calli with 7 Gy, 8 Gy and 9 Gy gamma rays were multiplied by subculture for 5 times. Shoot induction was achieved in medium containing 1 mg L-1 BAP concentration. Average plant height, root length and branching number parameters of plants regenerated from calli were determined. Salt stress was applied to the plants acclimatized from in vitro to the climate chambers. changes in the amount of peroxidase (POD) and superoxide dismutase (SOD) activities of antioxidant enzymes and the changes in lipid peroxidation were revealed in leaf samples taken from plants that continued to live in a salty environment after the 14 days of the treatment. At the end of the study, salt tolerance increased in mutant plants have the plant number of 8-21, 9-19, 7-9, 9-2 and 9-8 compared to the control, and these were determined as possible mutant plants.


Assuntos
Daucus carota , Raios gama , Antioxidantes , Técnicas de Cultura
6.
Food Chem ; 397: 133857, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944334

RESUMO

The objectives of this study were to extract bioactive compounds from carrot by-products and evaluate their chemical stability after encapsulation in liposomes (L) coated either with chitosan (Ch) or using sodium tripolyphosphate for chitosan complexation (TPP-Ch). The main compounds quantified in this study were carotenoids and total phenolic compounds, which reached encapsulation efficiencies higher than 75%. The TPP-Ch charged with carrot extract showed greater particle size (90.5 nm) and zeta potential (+22 mV) than vesicles without coating (68.0 nm and -2 mV, respectively), indicating that liposomes were successfully coated with chitosan. Regarding results of the carotenoid's encapsulated stability, TPP-Ch particles were more efficient preventing their degradation in all the experimental conditions studied (40 and 70 °C). It is significant that loaded TPP-Ch particles demonstrated similar results for the stability of carotenoid-rich extracts in ethanol, which would therefore be suitable for application in food industry or any aqueous matrices.


Assuntos
Quitosana , Daucus carota , Carotenoides , Quitosana/química , Daucus carota/química , Lipossomos/química , Tamanho da Partícula
7.
Plants (Basel) ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448803

RESUMO

Carrots require a certain number of cold hours to become vernalized and proceed to the reproductive stage, and this phenomenon is genotype-dependent. Annual carrots require less cold than biennials to flower; however, quantitative variation within annuals and biennials also exists, defining a gradient for vernalization requirement (VR). The flowering response of carrots to day length, after vernalization has occurred, is controversial. This vegetable has been described both as a long-day and a neutral-day species. The objective of this study was to evaluate flowering time and frequency in response to different cold treatments and photoperiod regimes in various carrot genotypes. To this end, three annual genotypes from India, Brazil, and Pakistan, and a biennial carrot from Japan, were exposed to 7.5 °C during 30, 60, 90, or 120 days, and then transferred to either long day (LD) or short day (SD) conditions. Significant variation (p < 0.05) among the carrot genotypes and among cold treatments were found, with increased flowering rates and earlier onset of flowering being associated with longer cold exposures. No significant differences in response to photoperiod were found, suggesting that post-vernalization day length does not influence carrot flowering. These findings will likely impact carrot breeding and production of both root and seed, helping in the selection of adequate genotypes and sowing dates to manage cold exposure and day-length for different production purposes.

8.
J Agric Food Chem ; 70(5): 1629-1639, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35090124

RESUMO

Epidemiological data suggest that consuming diets rich in carotenoids can reduce the risk of developing several non-communicable diseases. Thus, we investigated the extent to which carotenoid contents of foods can be increased by the choice of food matrices with naturally high carotenoid contents and thermal processing methods that maintain their stability. For this purpose, carotenoids of 15 carrot (Daucus carota L.) cultivars of different colors were assessed with UHPLC-DAD-ToF-MS. Additionally, the processing effects of air drying, air frying, and deep frying on carotenoid stability were applied. Cultivar selection accounted for up to 12.9-fold differences in total carotenoid content in differently colored carrots and a 2.2-fold difference between orange carrot cultivars. Air frying for 18 and 25 min and deep frying for 10 min led to a significant decrease in total carotenoid contents. TEAC assay of lipophilic extracts showed a correlation between carotenoid content and antioxidant capacity in untreated carrots.


Assuntos
Daucus carota , Antioxidantes , Carotenoides
9.
Chemosphere ; 290: 133200, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914957

RESUMO

Cadmium (Cd) is one of the major hazardous elements that is very toxic to the health of both human and plants. The toxicity of Cd causes plants to suffer by disabling their overall physiological mechanisms. Therefore, present study was intended to investigate the synergistic role of AgNPs and IAA in improving the resilience against Cd toxicity and underlaying physiological and biochemical mechanisms in carrot (Daucus carota L.) plants. Also, the existence of genotypic variation for Cd tolerance in D. carota was also studied. The results revealed that Cd stress decreased plant growth attributes like root diameter, root length, root weight, shoot weight, shoot length, leaves fresh weight and leaves dry weight. Nonetheless, AgNPs and IAA mitigated Cd stress by detoxifying reactive oxygen species (ROS). Additionally, the application of AgNPs and IAA boosted plant growth through reducing the level of malondialdehyde (MDA). Enhancement in the activity of phenol synthesizing and oxidizing enzymes including peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase was also observed by application of AgNPs and IAA. The increased activities of antioxidant enzymes including POX, PPO and PAL by the combined application of AgNPs and IAA advocate stress ameliorative role against Cd stress in plants. The enhanced Cd content was detected in the roots as compared to shoots of treated plants. Pre breed 22 was found as a Cd tolerant genotype.


Assuntos
Daucus carota , Nanopartículas Metálicas , Poluentes do Solo , Antioxidantes , Cádmio/toxicidade , Humanos , Ácidos Indolacéticos , Nanopartículas Metálicas/toxicidade , Raízes de Plantas , Prata/toxicidade , Poluentes do Solo/toxicidade
10.
Food Sci Technol Int ; 28(5): 421-429, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34078129

RESUMO

In fresh-cut vegetables, plant tissues are often challenged by (a)biotic stresses that act in combination, and the response to combinatorial stresses differs from that triggered by each individually. Phenolic induction by wounding is a known response contributing to increase products phenolic content. Heat application is a promising treatment in minimal processing, and its interference on the wound-induced response is produce-dependent. In carrot, two-combined stress effects were evaluated: peel removal vs. shredding, and heat application (100 °C/45 s) vs. shredding, on changes in total phenolic content (TPC) during 10 days (5 °C). By applying the first stress combination, a decrease in TPC was verified on day 0 (∼50%), ascribed to the high phenolic content of peels. Recovery of initial fresh carrot levels was achieved after 7 days owing to phenolic biosynthesis induced by shredding. For the second combination, changes in TPC, phenylalanine-ammonia-lyase (PAL), and peroxidase (POD) activity of untreated (Ctr) and heat-treated (HS) peeled shredded carrot samples were evaluated during 10 days. The heat-shock did not suppress phenolic biosynthesis promoted by PAL, although there was a two-day delay in TPC increments. Notwithstanding, phenolic accumulation after 10 days exceeded raw material TPC content. Also, the decrease in POD activity (30%) could influence quality degradation during storage.


Assuntos
Daucus carota , Antioxidantes/metabolismo , Fenóis/análise , Fenilalanina Amônia-Liase , Verduras/metabolismo
11.
Plant Physiol Biochem ; 167: 245-256, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385003

RESUMO

Plant class III peroxidases (CIII Prxs) are involved in numerous essential plant life processes, such as plant development and differentiation, lignification and seed germination, and defence against pathogens. However, there is limited information about the structure-function relationships of Prxs in carrots. This study identified 75 carrot peroxidases (DcPrxs) and classified them into seven subgroups based on phylogenetic analysis. Gene structure analysis revealed that these DcPrxs had between one and eight introns, while conserved motif analysis showed a typical motif composition and arrangement for CIII Prx. In addition, eighteen tandem duplication events, but only eight segmental duplications, were identified among these DcPrxs, indicating that tandem duplication was the main contributor to the expansion of this gene family. Histochemical analyses showed that lignin was mainly localised in the cell walls of xylem, and Prx activity was determined in the epidermal region of taproots. The xylem always showed higher lignin concentration and lower Prx activity compared to the phloem in the taproots of both carrot cultivars. Combining these observations with RNA sequencing, some Prx genes were identified as candidate genes related to lignification and pigmentation. Three peroxidases (DcPrx30, DcPrx32, DcPrx62) were upregulated in the phloem of both genotypes. Carrot taproots are an attractive resource for natural food colourants and this study elucidated genome-wide insights of Prx for the first time, developing hypotheses concerning their involvement with lignin and anthocyanin in purple carrots. The findings provide an essential foundation for further studies of Prx genes in carrot, especially on pigmentation and lignification mechanisms.


Assuntos
Antocianinas/metabolismo , Daucus carota , Lignina , Peroxidase , Daucus carota/enzimologia , Daucus carota/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Família Multigênica , Peroxidase/genética , Peroxidase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Fungi (Basel) ; 7(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069593

RESUMO

Carrots with different Rhizoctonia-like symptoms were found in the main Swedish carrot production areas from 2001-2020. The most commonly observed symptoms were a greyish-white felt-like mycelium and black scurf, the latter often associated with Rhizoctonia solani anastomosis group (AG) 3-PT on potato. An overall increase in disease incidence in all studied fields over time was observed for both symptoms. The majority of Rhizoctonia isolates sampled from carrot in the period 2015-2020 were identified as AG 3 (45%) and AG 5 (24%), followed by AG 1-IB (13%), AG 11 (5%), AG-E (5%), AG BI (3%), AG-K (3%) and AG 4-HGII (2%). To our knowledge, this is the first report describing AG 5 in Sweden as well as AG 3, AG 11 and AG-E inducing Rhizoctonia-like symptoms on carrot. Secondly, we report for the first time that R. solani AG 3, and the less observed AGs: AG 1-IB and AG 5 can induce black scurf symptoms on the taproot of carrots. Due to a widely used carrot-potato crop rotation in Swedish areas, a possible cross-over from potato to carrot is suggested. This information is of high importance to reduce Rhizoctonia inoculum in soils, since avoiding carrot-potato crop rotations needs to be considered.

13.
Genes (Basel) ; 12(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069875

RESUMO

The AT-hook motif containing nuclear localized (AHL) gene family, controlling various developmental processes, is conserved in land plants. They comprise Plant and Prokaryote Conserved (PPC) domain and one or two AT-hook motifs. DcAHLc1 has been proposed as a candidate gene governing the formation of the carrot storage root. We identified and in-silico characterized carrot AHL proteins, performed phylogenetic analyses, investigated their expression profiles and constructed gene coexpression networks. We found 47 AHL genes in carrot and grouped them into two clades, A and B, comprising 29 and 18 genes, respectively. Within Clade-A, we distinguished three subclades, one of them grouping noncanonical AHLs differing in their structure (two PPC domains) and/or cellular localization (not nucleus). Coexpression network analysis attributed AHLs expressed in carrot roots into four of the 72 clusters, some of them showing a large number of interactions. Determination of expression profiles of AHL genes in various tissues and samples provided basis to hypothesize on their possible roles in the development of the carrot storage root. We identified a group of rapidly evolving noncanonical AHLs, possibly differing functionally from typical AHLs, as suggested by their expression profiles and their predicted cellular localization. We pointed at several AHLs likely involved in the development of the carrot storage root.


Assuntos
Motivos AT-Hook/genética , Daucus carota/crescimento & desenvolvimento , Daucus carota/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Filogenia , Transcriptoma/genética
14.
Plants (Basel) ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578716

RESUMO

The present study examined the effects of Candidatus Phytoplasma solani infection on antioxidative metabolism in leaves and roots of carrot (Daucus carota L.). Disease symptoms appeared at the end of June in the form of the chlorosis on some of the leaves, which became intensely red one week later, while the previously healthy leaves from the same branch becme chlorotic. A few days later, all leaves from the infected leaf branch were intensely red. Infected plants also had slower growth compared to the healthy ones with fewer leaf branches developed. The roots of infected plants were less developed, seared, or gummy with or without brown-colored root hair. The presence of the pathogen was detected by sequencing the 16S rRNA. National Center for Biotechnology Information (NCBI) BLAST analyses of the obtained sequence revealed 100% identity of tested strain with deposited Ca. Phytoplasma solani strains from various countries and hosts, all belonging to the "stolbur" group (16SrXII-A). Identity of 99.74% was found when the tested Serbian strain (MF503627) was compared with the reference stolbur strain STOL11 (AF248959). The oxidative damage of membranes in carrot cells was accompanied by a decrease in the content of photosynthetic pigments. Furthermore, for the determination of specific scavenging properties of the extracts, in vitro antioxidant assay was performed. In phytoplasma-infected carrot leaves, there was a greater reduction in the level of glutathione content (GSH); however; flavonoids and anthocyanidins seem to be responsible for the accompanied increased antioxidative capacity against hydroxyl radical and hydrogen peroxide.

15.
Biosci. j. (Online) ; 37: e37085, Jan.-Dec. 2021. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1359269

RESUMO

Phosphate fertilization is indispensable for carrot cultivation, as it contributes to plant development, formation of marketable roots and higher yields. In this context, the objective of this study was to evaluate the production and nutritional efficiency of carrot cultivars under phosphate fertilization. The experiments were carried out from July to November 2016 and from June to October 2017, at the Rafael Fernandes experimental farm, District of Alagoinha, Mossoró, RN, Brazil. The experimental design was in randomized blocks, in a 4×4 factorial scheme with 4 replicates. The treatments consisted of the combination of carrot cultivars (Brasília, Planalto, Suprema and Nativa) with phosphorus (P) doses (0, 90, 180 and 270 kg ha-1 P2O5). The characteristics analyzed were: P content in the diagnostic leaf, plant dry matter, plant height, marketable and total yields, and the classification of cultivars for efficiency and response to phosphate fertilization. The increments promoted by phosphate fertilization were 64% in plant height, 444% in dry matter and 284% in marketable yield. The maximum marketable yield was obtained with doses from 186.8 to 243.5 kg ha-1, depending on the cultivar. The Native cultivar was classified as more efficient in the use of P.


Assuntos
Nutrientes/análise , Produtos Agrícolas , Daucus carota
16.
J Agric Food Chem ; 68(51): 15311-15318, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300338

RESUMO

The study was aimed to investigate the combined effect of acid blanching (AB) and high-voltage electric field cold plasma (HVCP) on carrot juice quality. Before juice extraction, carrots were separated into three parts: control, blanched (100 °C for 5 min) with non-acidified water, and blanched with acidified water (35 g/L citric acid at pH 1.34). Carrot juice was then subjected to dielectric barrier discharge at 80 kV for 4 min. Results indicated that AB treatment significantly influenced the efficiency of HVCP. AB-HVCP resulted in antimicrobial synergism, which is an outcome of acidified NO2-, H2O2, O-, and peroxynitrites (ONOO-) or its precursor OH/NO2, along with other species. In addition, plasma treatment also promotes the accumulation of coloring compounds, chlorogenic acid, and sugar contents by surface erosion of the epidermal layer, cis isomerization, rupturing of phenol-sugar and phenolic-cell matrix bonds, and depolymerized long-chain polysaccharides by cleavage of the glycoside bond. Therefore, AB-HVCP is a potential emerging hurdle strategy for fresh produce.


Assuntos
Daucus carota/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Gases em Plasma/farmacologia , Ácidos/análise , Ácido Clorogênico/análise , Daucus carota/efeitos dos fármacos , Manipulação de Alimentos/instrumentação , Fenóis/análise , Açúcares/análise
17.
Front Plant Sci ; 11: 593047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362822

RESUMO

Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.

18.
PeerJ ; 8: e10492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354430

RESUMO

Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.

19.
Protoplasma ; 257(6): 1507-1517, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32577829

RESUMO

Carrot is a root crop consumed worldwide and has great nutritional qualities. It is considered as one of the ten most important vegetable crops. Cytokinins are an essential class of the plant hormones that regulate many processes of plant growth. Till now, the effects of cytokinin, BAP, on lignin biosynthesis and related gene expression profiles in carrot taproot is unclear. In order to investigate the effect of applied BAP on lignin-related gene expression profiles, lignin accumulation, anatomical structures, and morphological characters in carrot taproots. Carrot roots were treated with different concentrations of BAP (0, 10, 20, and 30 mg L-1). The results showed that the application of BAP significantly increased plant length, shoot fresh weight, root fresh weight, and taproot diameter. In addition, BAP at 20 mg L-1 or 30 mg L-1 enhanced the average number of petioles. BAP treatment led to increased number and width of xylem vessels. The parenchyma cell numbers of pith were significantly induced in taproots treated with the BAP at a concentration of 30 mg L-1. BAP significantly upregulated most of the expression levels of lignin biosynthesis genes, caused elevated lignin accumulation in carrot taproots. Our results indicate that BAP may play important roles in growth development and lignification in carrot taproots. Our results provide a valuable database for more studies, which may focus on the regulation of root lignification via controlling cytokinin levels in carrot taproots.


Assuntos
Citocininas/química , Daucus carota/química , Perfilação da Expressão Gênica/métodos , Lignina/síntese química
20.
J Sci Food Agric ; 100(13): 4968-4977, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32484243

RESUMO

BACKGROUND: This study evaluated the modification of physicochemical characteristics and fatty acid composition of fresh turkey sausages manufactured including carrot (Daucus carota L.) as a vegetable source (i.e., 10%, 20% and 30%, w/w). RESULTS: The results were compared with sausages used as controls (i.e., containing 100% turkey meat, w/w). Overall, significant differences were detected for all of the evaluated attributes. The inclusion of 20% and 30% carrot (w/w) in the sausages resulted in a reduction of the lipid content (by 5.42 and 5.26 g/100 g, respectively) and reduced energy value (-7.6%). The color parameters were strongly affected by the inclusion of carrot, recording a significant increase in both redness and yellowness. A reduction of Na content (-47.4% on average) was also observed when experimental carrot sausages were compared with control sausages. Interestingly, a significant reduction in the n-6/n-3 fatty acids ratio was also detected. A multivariate orthogonal projection to latent structures discriminant analysis (OPLS-DA) applied to the parameters studied here suggested that the inclusion of carrot provided completely different nutritional and physicochemical profiles, with color parameters possessing the highest discrimination potential. CONCLUSION: Including carrot in turkey sausages could represent a valuable tool to design healthier meat products. © 2020 Society of Chemical Industry.


Assuntos
Daucus carota/química , Ácidos Graxos/química , Aditivos Alimentares/análise , Produtos da Carne/análise , Animais , Daucus carota/metabolismo , Ácidos Graxos/metabolismo , Aditivos Alimentares/metabolismo , Manipulação de Alimentos , Humanos , Paladar , Perus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...